Roboball2d Documentation
Release 0.1.07

Nicolas Guetler and Vincent Berenz

Oct 11, 2022

Contents

1 Overview

1.1 Installation
1.2 Getting Started
1.3 Source Code
1.4 License Information . .

1.5 Authors and Maintainers
2 Roboball2d Example

3 Indices and tables

AR W W W W

9]

Roboball2d Documentation, Release 0.1.07

Contents 1

Roboball2d Documentation, Release 0.1.07

2 Contents

CHAPTER 1

Overview

Roboball2d is a lightweight python API to simulated 3 dofs torque controlled robot(s) and ball(s), along with a ren-
derer. It is based on Box2d and pyglet. It can be used for anything you want, but was created with reinforcement
learning in mind.

Roboball2d has tested on ubuntu 18.04 and python 3.5.2.

1.1 Installation

’# pip install roboball2d

1.2 Getting Started

* Roboball2d Example - A commented example of usage

After installation, you may also run the demos:

roboball2d_demo
roboball2d_balls_demo
roboball2d_rendering_demo
roboball2d_mirroring_demo

H oH o

1.3 Source Code

e https://github.com/intelligent- soft-robots/roboball2d

https://github.com/intelligent-soft-robots/roboball2d

Roboball2d Documentation, Release 0.1.07

1.4 License Information

Roboball2d is licensed under the BSD-3-Clause. See the LICENSE file for more information.
* https://github.com/intelligent-soft-robots/roboball2d/blob/master/LICENSE

1.5 Authors and Maintainers

* Nico Giirtler

* Vincent Berenz
Intelligent Soft Robots Laboratory, Max Planck Institute for Intelligent Systems
Copyrights 2020, Max Planck Gesellschaft

4 Chapter 1. Overview

https://github.com/intelligent-soft-robots/roboball2d/blob/master/LICENSE

CHAPTER 2

Roboball2d Example

Here the source code of roboball2d_demo. You may find the source of other demos:

* https://github.com/intelligent-soft-robots/roboball2d/tree/master/roboball2d/demos

import math, random, time

from
from
from
from
from
from

roboball2d.
roboball2d.
roboball2d.
roboball2d.
roboball2d.
roboball2d.

physics import B2World

robot import DefaultRobotConfig
robot import DefaultRobotState
robot import PDController

ball import BallConfig

ball gun import DefaultBallGun

def run(rendering=True) :

Runs the balls demo,

mmn

as a ball bounces around.

Parameters

rendering

renders

mmn

the environment if True

if rendering:

from roboball2d.rendering import PygletRenderer
from roboball2d.rendering import RenderingConfig

in which the robot moves using a PD controller

You may run the executable roboballZd demo after install to
see it in action.

(continues on next page)

https://github.com/intelligent-soft-robots/roboball2d/tree/master/roboball2d/demos

Roboball2d Documentation, Release 0.1.07

(continued from previous page)

configurations, using default
robot_config = DefaultRobotConfig/()
ball_config = BallConfig()
visible_area_width = 6.0
visual_height = 0.05

physics engine

world = B2World(robot_config,
ball_config,
visible_area_width)

graphics renderer
if rendering:
renderer_config = RenderingConfig(visible_area_width,
visual_height)
renderer = PygletRenderer (renderer_config,
robot_config,
ball config)

ball gun : specifies the reset of

the ball (by shooting a new one)

Here using default ball gun
ball_gun = DefaultBallGun (ball_config)

basic PD controller used to compute torque
controller = PDController ()
references = [-math.pi/8.0, -math.pi/8.0, math.pi/8.0]

init robot state : specifies the reinit of the robot
(e.g. angles of the rods and rackets, etc)
init_robot_state = DefaultRobotState (robot_config)

tracking the number of times the ball bounced
n_bounced = 0

we add a fixed goal
starting at x=3 and finishing at x=6

goal = (2,4)

goal_color = (0,0.7,0)
goal_activated_color = (0,1,0)
n_episodes = 0

running 5 episodes
for episode in range (5) :

episode_end = False

resetting the robot and shooting

the ball gun

world_state = world.reset (init_robot_state,
ball_gun)

keeping track of the number of times the
ball bounced
n_bounced = 0

(continues on next page)

6 Chapter 2. Roboball2d Example

Roboball2d Documentation, Release 0.1.07

(continued from previous page)

while not episode_end:

running controller

angles = [joint.angle for joint
in world_state.robot.joints]
angular_velocities = [joint.angular_velocity for joint
in world_state.robot.joints]
torques = controller.get (references,
angles,

angular_velocities)

=

One simulation step

H=

returns a snapshot of all the data computed

and updated by the physics engine at this

iteration (see below for all information managed)
relative=True : torques are not given in absolute value,
but as values in [-1,1] that will be mapped to
[-max_torque, +max_torque]

world_state = world.step(torques,relative_torques=True)

S o HH R W H

keeping track number of times the ball bounced
if world_state.ball hits_floor
n_bounced += 1
if n_bounced >= 2
1f bounced more than 2 : end of episode
episode_end = True

#
Rendering
#

if rendering:
was the goal hit ?

color = goal_color
if world_state.ball_hits_floor
p = world_state.ball_hits_floor
if p>goal[0] and p<goalll]:
yes, using activated color
color = goal_activated_color

the renderer can take in an array of goals
to display

goals = [(goal[0],goal[l],color)]
render based on the information provided by

the physics engined
renderer.render (world_state,goals,time_step=1.0/60.0)

(continues on next page)

Roboball2d Documentation, Release 0.1.07

(continued from previous page)

8 Chapter 2. Roboball2d Example

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

	Overview
	Installation
	Getting Started
	Source Code
	License Information
	Authors and Maintainers

	Roboball2d Example
	Indices and tables

